
EE 435

Lecture 27

Data Converter Characterization

• Linearity Metrics

• Spectral Characterizaton



INL-based ENOB
Consider initially the continuous INL definition for an ADC where the INL of an 

ideal ADC is XLSB/2

Assume

Define the effective LSB by

EQ

 REF
 LSBEFF n

=
2

X
X

Thus
EQn

LSBEFFINL=θ2 X

Since an ideal ADC has an INL of XLSB/2, express INL in terms of ideal ADC

1)

2
EQ(n LSBEFFX

INL= θ2
   

    
Setting term in [ ] to 1, can solve for nEQ to obtain

 EQ 2 R 2
1

ENOB = n  = log n -1-log
2θ


 

 
 

REF LSBRINL= θX  = X

where XLSBR is the LSB based upon the defined resolution

where nR is the defined resolution
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INL-based ENOB
 R 2ENOB = n -1-log 

ENOB

½ n

1 n-1

2 n-2

4 n-3

8 n-4

16 n-5

Consider an ADC with specified resolution of nR and INL of ν LSB


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Differential Nonlinearity (DAC)
Nonideal DAC

INXC0 C1 C2 C3 C4 C5 C6 C7

XREF

XOUT(k)-XOUT(k-1)

XOUT

Increment at code 4

 
   OUT OUT LSB

LSB

X k -X k-1 -X
DNL k =

X

Increment at code k is a signed quantity and will be negative if XOUT(k)<XOUT(k-1)

  
1 k N-1

DNL= DNL kmax
 

DNL=0 for an ideal DAC
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Differential Nonlinearity (ADC)
Nonideal ADC

 
 T(k+1)  Tk  LSB

LSB

- -
DNL k =

X X X

X 

XIN

OUTX

XREF

C0

C1

C2

C3

C4

C5

C6

C7

XT1 XT2 XT3 XT4

XT5

XT6

XT7

Code width 

for code C3 

  
2 k N-1

DNL= DNL kmax
 

DNL=0 for an ideal ADC

Note:  In some nonideal ADCs, two or more break points could cause transitions 

to the same code Ck making the definition of DNL ambiguous
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Linearity Measurements (testing)

VIN(t) DUT

VREF

XIOUT

Code density testing:

VREF

t

VIN(t)

C0
CN-1

ˆ
OUTX ,  C

• First and last bins generally have many extra counts (and thus no useful information)

• Typically average 16 or 32 hits per code
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INL Often Not a Good Measure of Linearity

XIN

XOUT

XREF

XREF

XIN

XOUT

XREF

XREF

XIN

XOUT

XREF

XREF

XIN

XOUT

XREF

XREF

Four identical INL with dramatically different linearity

Review From Last-Last Lecture



Linearity Issues

• INL is often not adequate for predicting the 

linearity performance of a data converter

• Distortion (or lack thereof) is of major 

concern in many applications

• Distortion is generally characterized in 

terms of the harmonics that may appear in 

a waveform

Review From Last Lecture



Two Popular Methods of Linearity 

Characterization

• Integral and Differential Nonlinearity (metrics:  INL, DNL)

• Spectral Characterization (Based upon spectral harmonics of 

sinusoidal signals   metrics: THD, SFDR, SDR SNR)

XIN

XOUT

XREF

XREF

k

kA

1 2 3 4 5 6
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Spectral Analysis

T

T

2π
ω 

 





1k

kk0 θtkωsinAAf(t)

alternately

   









1k

k

1k

k0 tkωcosbtkωsinaAf(t)

2

k

2

kk baA 

If f(t) is periodic

Termed the Fourier Series Representation of f(t)
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Spectral Analysis

Nonlinear

System (weakly)

XIN(t) XOUT(t)

Distortion Types:  

Frequency Distortion

Nonlinear Distortion (alt. harmonic distortion)

Frequency Distortion:  Amplitude and phase of system is altered but 

output is linearly related to input

Nonlinear  Distortion:  System is not linear, frequency components 

usually appear in the output that are not present in the input

Spectral Analysis is the characterization of a system with a periodic input with 

the Fourier series relationships between the input and output waveforms



Spectral Analysis

Nonlinear

System

XIN(t) XOUT(t)

If    θωtsinXtX mIN 

All spectral performance metrics depend upon the sequences 

Spectral performance metrics of interest:    SNDR, SDR, THD, SFDR, IMOD

0k k
A



 1k k






     0

1 1

sin cosOUT k k

k k

X t A a k t b k t 
 

 

   

Alternately

2 2

k k kA a b  1tan k
k

k

b

a
   

  
 
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FS, FT, DTFS,DTFT



DFT,DFS,FFT,IDFT



FS, FT, DTFS,DTFT

DFT, DFS, FFT, IDFT

The “Fourier” Representations:

Really fundamental concepts but varying notation and maybe 

varying perceptions



Spectral Characterization
Assume f(t) is periodic with period T and  band-limited

   
1

sin
N

k k

i

f t A k t 


 

1 2, ,,,, NX X X X frequency domain

time domain

DFT

IDFT

2N parameters

2N parameters

(Xk are complex)

(Ak ,θk)

f(t)=IDFT (DFT(f(t)))

     , 2 ,....S S Sx f T f T f NT 

NTs=Tf(t) is sampled N times at with sampling interval TS



Spectral Characterization

Will focus on how Fourier Series Representation of a periodic signal is altered  

when it passes through a weakly  nonlinear system  

Relationship between DFT and continuous-time Fourier Series representation 

is fundamental to characterizing spectral performance of a weakly nonlinear 

system  



Distortion Analysis



 0kkA

A1 is termed the fundamental

Ak is termed the kth harmonic

k

kA

1 2 3 4 5 6

• Often termed the DFT coefficients (will show later)

• Spectral lines, not a continuous function



Distortion Analysis



 0kkA

k

kA

1 2 3 4 5 6

Often ideal response will have only fundamental present and all 

remaining spectral terms will vanish



Distortion Analysis



 0kkA

k

kA

1 2 3 4 5 6

For a low distortion signal, the 2nd and higher harmonics are generally 

much smaller than the fundamental

The magnitude of the harmonics generally decrease rapidly with k for low 

distortion signals



Distortion Analysis

k

kA

1 2 3 4 5 6

f(t) is band-limited to frequency 2π f kX if Ak=0 for all k>kx

Assume f(t) is periodic with period 1
T

f


Where                 are the Fourier series coefficients of f(t)
0k k

A






Distortion Analysis

Total Harmonic Distortion, THD

lfundamentaofvoltageRMS

harmonicsinvoltageRMS
THD 

2

A

...
2

A

2

A

2

A

THD
1

2

4

2

3

2

2 




























1

2k

2

k

A

A

THD









Distortion Analysis

Spurious Free Dynamic Range, SFDR

The SFDR is the difference between the fundamental and the largest harmonic

SFDR is usually determined by either the second or third harmonic

k

kA

1 2 3 4 5 6

SFDR



Distortion Analysis
In a fully differential symmetric circuit, all even harmonics are 

absent in the differential output !

k

kA

1 2 3 4 5 6



Distortion Analysis
Theorem: In a fully differential symmetric circuit, all even-order terms 

are absent in the Taylor’s series output for symmetric differential 

excitations !

Proof: Expanding in a Taylor’s series around VID=0, we obtain

VID VOD

+

-

+

-

VO1

VO2

   

   

     1

k k

OD 01 02 k ID k ID

k 0 k 0

k k

OD k ID ID

k 0

k k

OD k ID ID

k 0

V =V V h V h -V

V = h V -V

V = h V V

 

 









  

 
 

  
 

 




k

When k is even, term in [  ] vanishes

   

   

k

01 ID k ID

k 0

k

02 ID k ID

k 0

V f V h V

V f -V h -V









 

 







Distortion Analysis
Theorem: In a fully differential symmetric circuit, all even harmonics are 

absent in the differential output for symmetric differential excitations !

Proof:

VID VOD

+

-

+

-

VO1

VO2

Recall:

 

  

  

1

2

0

2

2

0

sin 2

sin

sin 2

n

k

k

n

n

k k

k

h n k x for nodd

x

g n k x for neven










 



 



 






where hk, gk, and θk are constants

That is, odd powers of sinn(x) have only  odd harmonics present 

and even powers have only even harmonics present



Distortion Analysis
Theorem: In a fully differential symmetric circuit, all even harmonics are 

absent in the differential output for symmetric differential sinusoidal excitations !

Proof:

Expanding in a Taylor’s series around VID=0, we obtain

Assume VID=Ksin(ωt) W.L.O.G. assume K=1

VID VOD

+

-

+

-

VO1

VO2

  





0k

k

kO1 tωsinhV   





0k

k

kO2 tωsin-hV

               









0k

kkk

k

0k

kk

kO2O1OD tωsin1tωsinhtωsin-tωsinhVVV

Observe the even-ordered powers and hence even harmonics are absent in this last sum

  )k

O2 ID k ID

k 0

V f -V h (-V




   k

O1 ID k ID

k 0

V f V h V




  and



Distortion Analysis

How are spectral components determined?

   













 





Tt

t

tjkω

Tt

t

tjkω

k

1

1

1

1

dtetfdtetf
ωT

1
A

By integral

By DFT

By FFT (special computational method for obtaining DFT)

(with some restrictions that will be discussed)

   dtktωsintf
Tω

2
a

Tt

t

k

1

1




    dtktωcostf
Tω

2
b

Tt

t

k

1

1






or

Integral is very time consuming, particularly if large number of components are required



Distortion Analysis

How are spectral components determined?

Consider sampling f(t) at uniformly spaced points in time TS seconds apart

T

TS

This gives a sequence of samples  
N

s k=1
f kT



Distortion Analysis

T

 





1k

kk0 θtk ωs inAAf( t)

Consider a function  f(t) that is periodic with period T

Band-limited Periodic Functions

Definition:    A periodic function of frequency f  is band

limited  to a frequency fmax if Ak=0 for all maxf
k

f


2
=2 f =

T


 



Distortion Analysis
T

TS
NOTATION:

T: Period of Excitation

TS: Sampling Period

NP: Number of periods over which samples are taken

N: Total number of samples

T

NT
N S

P 
Note:  NP is not an integer unless a specific relationship

exists between N, TS and T

P

N 1
h = Int -1

2 N

  
  
  

Note:  The function Int(x) is the integer part of x



Distortion Analysis
T

TS

THEOREM (conceptual) : If a band-limited periodic signal is sampled at a 

rate that exceeds the Nyquist rate, then the Fourier Series coefficients 

can be directly obtained from the DFT of a sampled sequence. 

  1N

0k
kΧ




  1N

0kSkTx






Distortion Analysis
T

TS

  1-hm01mNΧ
N

2
A Pm 

  0kΧ 

THEOREM:  Consider a periodic signal with period T=1/f and sampling 

period TS=1/fS.  If NP is an integer and x(t) is band limited to fMAX, then

and                            for all k not defined above

where                          is the DFT of the sequence

N=number of samples,  NP is the number of periods, and 

  1N

0k
kΧ




  1N

0kSkTx




MAX

P

f 1
h = Int

f N

 
 

 

Key Theorem central to Spectral Analysis  that is widely used !!!  and often “abused”



Why is this a Key Theorem? 
T

TS

• DFT requires dramatically less computation time than the integrals for 

obtaining  Fourier Series coefficients

• Can easily determine the sampling rate (often termed the Nyquist rate)  to 

satisfy the band limited part of the theorem 

  1-hm01mNΧ
N

2
A Pm 

  0kΧ 

THEOREM:  Consider a periodic signal with period T=1/f and sampling 

period TS=1/fS.  If NP is an integer and x(t) is band limited to fMAX, then

and                            for all k not defined above

where                          is the DFT of the sequence

N=number of samples,  NP is the number of periods, and 

  1N

0k
kΧ




  1N

0kSkTx




MAX

P

f 1
h = Int

f N

 
 

 
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How is this theorem abused? 
T

TS

• Much evidence of engineers attempting to use the theorem when NP is not 

an integer

• Challenging to have NP an integer in practical applications

• Dramatic errors can result if there are not exactly an integer number of 

periods in the sampling window 

  1-hm01mNΧ
N

2
A Pm 

  0kΧ 

THEOREM:  Consider a periodic signal with period T=1/f and sampling 

period TS=1/fS.  If NP is an integer and x(t) is band limited to fMAX, then

and                            for all k not defined above

where                          is the DFT of the sequence

N=number of samples,  NP is the number of periods, and 

  1N

0k
kΧ




  1N

0kSkTx




MAX

P

f 1
h = Int

f N

 
 

 

38



T

TS

t

3 Periods of Periodic Signal in Bold Blue

SAMP SIG

P

N
f f

N


39



Distortion Analysis
T

TS

k

 k

NP+1 2NP+1 3NP+1 4NP+1

A1

A2

A3 A4A0

If the hypothesis of the theorem are satisfied, we thus have

40



Distortion Analysis

k

 k

NP+1 2NP+1 3NP+1 4NP+1

A1

A2

A3 A4A0

If the hypothesis of the theorem are satisfied, we thus have

FFT is a computationally efficient way of calculating  

the DFT, particularly when N is a power of 2
41



FFT Examples

Recall the theorem that provided for the relationship between the 

DFT terms and the Fourier Series Coefficients required

1. The sampling window be an integral number of periods

2. The input signal is band limited to fMAX

43



Some notation and understanding related to Fourier Series, Discrete 

Fourier Series, Discrete Fourier Transform, Nyquist Rate, and Nyquist 

Frequency may be inconsistent from source to source, confusing, and not 

always correctly presented in all forums 

From Wikipedia – March 30 2018

44



From Wikipedia – March 30 2018

Some notation and understanding related to Fourier Series, Discrete 

Fourier Series, Discrete Fourier Transform, Nyquist Rate, and Nyquist 

Frequency may be inconsistent and confusing 

45



FFT Examples

Recall the theorem that provided for the relationship between the 

DFT terms and the Fourier Series Coefficients required

1. The sampling window be an integral number of periods

2.
max

P
SIGNAL

2 f
N > N

f
 

  
 

MAX
P

f N
f   •

2 N
(from                           )

46



Considerations for Spectral 

Characterization

•Tool Validation

•FFT Length

•Importance of Satisfying Hypothesis

•Windowing

47



Considerations for Spectral 

Characterization

•Tool Validation  (MATLAB)

•FFT Length

•Importance of Satisfying Hypothesis

•Windowing

48



FFT Examples

Recall the theorem that provided for the relationship between the DFT 

terms and the Fourier Series Coefficients required

1. The sampling window must be an integral number of periods

2.
max

P
SIGNAL

2 f
N > N

f

49



Example

)sin(.)sin( t250tVIN 

WLOG  assume fSIG=50Hz

Consider  NP=20  N=512

SIGπf2ω 

Recall      20log10(0.5)=-6.0205999

Recall      20log10(1.0)=0.0000000

50 512
640

2 20

SIG
MAX

P

f N
f  = •

2 N
Hz

 
   

 

fMAX-ACT=100Hz

fMAX-ACT<<fMAX

1
2 1280SAMPLE SIG MAX

P SIGSAMPLE P

1 N
f  = f f  

N •TT N

N

Hz
 

    
   
 
 
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Input Waveform
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Input Waveform
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Input Waveform
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Spectral Response  (expressed in dB)

(Horizontal axis is the “Index” axis but converted to frequency) 
P

SIGNALAXIS
N

1n
ff




(Actually Stem plots but points connected 

in plotting program)
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Spectral Response  (expressed in dB)

Note Magnitude is Symmetric wrt  fSAMPLE
P

SIGNALAXIS
N

1n
ff




(Actually Stem plots but points connected 

in plotting program)
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DFT Horizontal Axis Converter to Frequency :
P

SIGNALAXIS
N

1n
ff




Spectral Response
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Spectral Response
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Columns 1 through 5 

-316.1458 -312.9517 -329.5203 -311.1473 -314.2615

Columns 6 through 10 

-315.2584 -330.6258 -317.2896 -312.2316 -311.6335

Columns 11 through 15 

-308.2339 -317.7064 -315.3135 -307.9349 -304.5641

Columns 16 through 20 

-314.0088 -302.6391 -306.6650 -311.3733 -308.3689

Columns 21 through 25 

-0.0000 -307.7012 -312.9902 -312.8737 -305.4320

Fundamental will appear at position 1+Np = 21

Observe system noise floor due to both spectral limitations of signal 

generator and numerical limitations in FFT are below -300db
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Columns 26 through 30 

-307.8301 -309.0737 -305.8503 -312.2772 -315.7544

Columns 31 through 35 

-311.9316 -316.0581 -318.3454 -306.4977 -308.6679

Columns 36 through 40 

-309.9702 -305.9809 -322.1270 -310.6723 -310.3506

Columns 41 through 45 

-6.0206    -309.6071 -314.1026 -307.6405 -302.9277

Columns 46 through 50 

-313.0745 -304.2330 -310.8487 -317.7966 -316.3385

Second Harmonic at 1+2Np = 41
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Columns 51 through 55 

-307.0529 -312.7787 -312.9340 -323.2969 -314.9297

Columns 56 through 60 

-318.7605 -303.5929 -305.2994 -310.6430 -306.7613

Columns 61 through 65 

-304.8298 -301.4463 -301.1410 -303.1784 -317.8343

Columns 66 through 70 

-308.6310 -307.0135 -321.6015 -316.6548 -309.8946

Columns 71 through 75 

-306.3472 -323.0110 -319.3267 -314.7873 -310.4085

Third Harmonic at 1+3Np = 61
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Columns 76 through 80 

-319.8926 -303.3641 -319.6263 -307.6894 -305.1945

Columns 81 through 85 

-306.8190 -304.8860 -303.6531 -307.2090 -309.8014

Columns 86 through 90 

-313.4988 -303.4513 -310.4969 -317.9652 -312.5846

Columns 91 through 95 

-309.8121 -311.6403 -312.8374 -310.5414 -308.7807

Columns 96 through 100 

-316.7549 -316.3395 -308.4113 -307.3766 -311.0358

Fourth  Harmonic at 1+4Np = 81

61



Question:  How much noise is in the computational 

environment?

Environmental 

Noise

Is this due to quantization in the computational environment or to 

numerical rounding in the FFT?

62



Question:  How much noise is in the computational 

environment?

Environmental 

Noise

Observation:   This noise is nearly uniformly distributed 

The level of this noise at each component is around -310dB

63



Stay Safe and Stay Healthy !



End of Lecture 27


