EE 435

Lecture 27

Data Converter Characterization

* Linearity Metrics
e Spectral Characterizaton



Review From Last Lecture

INL-based ENOB

Consider initially the continuous INL definition for an ADC where the INL of an
ideal ADC is X gg/2

Assume INL= OXRerF = X sBR
where X sgr IS the LSB based upon the defined resolution

Define the effective LSB by q

_XREF
X | SBEFF=

2MEQ

Thus n
INL=82"5° X spEFF

Since an ideal ADC has an INL of X, sg/2, express INL in terms of ideal ADC

INL:[GZ(nEQ +1) }( XLSI;EFF j

Setting term in [ ] to 1, can solve for ng,, to obtain

1
ENOB = ngp =logy | — |=nRr-1-lo
EQ gz(zej R 92 (v)
where ng is the defined resolution



Review From Last Lecture

INL-based ENOB
ENOB = ng-1-log, (v)

Consider an ADC with specified resolution of n; and INL of v LSB

¥, ENOB
Y5 n

1 n-1
2 n-2
4 n-3
38 n-4
16 n-5




Review From Last Lecture

Differential Nonlinearity (DAC)

Nonideal DAC

A Lout

Increment at code 4
Fout(K)-Lour(k-1)

? T I | >
Cy C, C

Co 3 Cs4 Cs Cs C; 5(| N

Increment at code K is a signed quantity and will be negative if X5 1(K)<Xq,1(k-1)

DNL (k)= XouTt (k)'X;LL;;(k'l) -XLSB

DNL= max {DNL (k)|
1<k<N-1

DNL=0 for an ideal DAC



Review From Last Lecture

Differential Nonlinearity (ADC)

Nonideal ADC

L1k+1) LTk LSB
DNL (k)= oo

DNL= max {[DNL(k)|}
2<k<N-1

DNL=0 for an ideal ADC

Note: In some nonideal ADCs, two or more break points could cause transitions
to the same code C, making the definition of DNL ambiguous



ew From Last Lecture

Linearity Measurements (testing)

Code density testing:

Xiout
w0 | put |
*
A VREF
Xout: C
[ 2 ]
. Cu

* First and last bins generally have many extra counts (and thus no useful information)
* Typically average 16 or 32 hits per code



Review From Last-Last Lecture

INL Often Not a Good Measure of Linearity

Four identical INL with dramatically different linearity

A Xourt

Xrer T

L
X|N XIN
— I > >
-7 XREF
A Xout A Xout
// //
| 7
XREF XREF
e <
- -
/// -7
Vv X //
IN XIN
/ ]
e I > e ' >

A Xour

Xrer T




Review From Last Lecture

Linearity Issues

* INL Is often not adequate for predicting the
Inearity performance of a data converter

 Distortion (or lack thereof) is of major
concern in many applications

 Distortion is generally characterized in
terms of the harmonics that may appear Iin
a waveform




Review From Last Lecture

Two Popular Methods of Linearity
Characterization

 Integral and Differential Nonlinearity (metrics: INL, DNL)

° Spectral Characterization (Based upon spectral harmonics of
sinusoidal signals metrics: THD, SFDR, SDR SNR)

‘Ak‘ A

!Mu---



Review From Last Lecture

Spectral Analysis

T —
If f(t) is periodic

fity =A,+) Asin(kot+0,)
k=1
alternately

f(t) = Ay + i a,sin (ko t)+i b cos(kat) o=—"
= =

A, :\/ai+bi

Termed the Fourier Series Representation of f(t)



Review From Last Lecture

Spectral Analysis

X”\'(t) Nonlinear >§OUT(t)

System (weakly)

A 4

Distortion Types:
Frequency Distortion
Nonlinear Distortion (alt. harmonic distortion)

Frequency Distortion: Amplitude and phase of system is altered but
output is linearly related to input

Nonlinear Distortion: System is not linear, frequency components
usually appear in the output that are not present in the input

Spectral Analysis is the characterization of a system with a periodic input with
the Fourier series relationships between the input and output waveforms



Review From Last Lecture

Spectral Analysis

Xin() | Nonlinear XOUT(t)
| System '

X, (t)=X_sin (ot +0)
Xour() =A, + iAksin (kot+0,)
k=1

All spectral performance metrics depend upon the sequences <Ak >f:o <(9k >k:1

Spectral performance metrics of interest. SNDR, SDR, THD, SFDR, IMOD

Alternately

Xour ()= A, + > a, sin(kat) +> b, cos(kat) A = a2 1 b? g _ tanl(&]
k=1 k=1 k



3.3 Fourier Representations
Jor Four Classes of Signals

| and
Systems

Second Edition

Simon Haykin

Barry Van Veen

There are four distinct Fourier representations, each applicable to a different class of sig-
nals. The four classes are defined by the periodicity properties of a signal and whether the
signal is continuous or discrete in time. The Fourier series (FS) applies to continuous-time

lies to a signal that is continuous in time and nonperiodic:[The

periodic signals, and the[discrete-tume Fourier series (D 1F5) ppplies to discrete-time peri-
IC_si peﬁo:lngm'h'hwﬁmmﬂurm'lt' 1 I presentation$. The Fourier

transform (FT) app

time Fourier transform (D pphes to a signal that is discrete in time and nonperiodic.

Table 3.1 illustrates the relationship between the temporal properties of a signal and the
appropriate Fourier representation.

FS, FT, DTFS,DTFT



DFT (Discrete Fourier Transform) is a practical version of the DTFT, that is computed for a
finite-length discrete signal. The DFT becomes equal to the DTFT as the length of the
sample becomes infinite and the DTFT converges to the continuous Fourier transform in the
limit of the sampling frequency going to infinity. oci 27,2014

The DFT is the most important discrete transform,
used to perform Fourier analysis in many practical
applications.[1] In digital signal processing, the

DFS. DTFT, and DFT

1
Herein we describe the relationship between the Discrete Fourier Series (DFS), Discrete Time
Fourier Transform (DTFT), and the Discrete Fourier Transform (DFT). Why? The real reason
is that the DFT 1s easily implemented on a computer and is part of every mathematics package,
so 1t would be nice to know how to determine or approximate the DFT and DTFT on a computer.

Fast Fourier transform - Wikipedia

A fast Fourier transform (FFT) is an algorithm that computes the discrete Fourier transform
(DFT) of a sequence, or its inverse (IDFT). Fourier analysis converts a signal from its original
domain (often time or space) to a representation in the frequency domain and vice versa.

DFT,DFS,FFT,IDFT



The “Fourier” Representations:

FS, FT, DTFS,DTFT

DFT, DFS, FFT, IDFT

Really fundamental concepts but varying notation and maybe
varying perceptions



Spectral Characterization

Assume f(t) is periodic with period T and band-limited

f(t) is sampled N times at with sampling interval Tq NT,=T
N -
time domain f(t)=2 Acsin(kat +6,) 2N parameters
i=1

X =<f(Ts).f(2Tg ),...F (NT5) >

(A 84

DFT

—

frequency domain X =< X, X000, Xy > 2N parameters

(X, are complex)

f()=IDFT (DFT(f(t)))



Spectral Characterization

Will focus on how Fourier Series Representation of a periodic signal is altered
when it passes through a weakly nonlinear system

Relationship between DFT and continuous-time Fourier Series representation
Is fundamental to characterizing spectral performance of a weakly nonlinear
system



Distortion Analysis

Ak Xor) =A,+ Y Asin(kot+6,)
k=1

| <A K >:<O=o

N

1 2 3 4 5 6
« Often termed the DFT coefficients (will show later)
» Spectral lines, not a continuous function

A, is termed the fundamental
A, is termed the kth harmonic



Distortion Analysis

N ' <A K >:<O=o

Often ideal response will have only fundamental present and all
remaining spectral terms will vanish



Distortion Analysis

Al 4 .
<Ak>k:0
! | S S B B

For a low distortion signal, the 2" and higher harmonics are generally
much smaller than the fundamental

The magnitude of the harmonics generally decrease rapidly with k for low
distortion signals



Distortion Analysis

Al 4

1 | S T

| 1 2 3 4 5 6

Assume f(t) is periodic with period T :fl

f(t) is band-limited to frequency 2 f k, if A =0 for all k>k,

Where <Ak >Oko , are the Fourier series coefficients of f(t)



Distortion Analysis

Total Harmonic Distortion, THD

TUD - RMS voltage In harmonics

- RMS voltage of fundamenta |




Distortion Analysis

Spurious Free Dynamic Range, SFDR

The SFDR is the difference between the fundamental and the largest harmonic

Al 4
' %
SFDR
'
T l T T Y O O |
| 1 2 3 4 5 6 K

SFDR is usually determined by either the second or third harmonic



Distortion Analysis

In a fully differential symmetric circuit, all even harmonics are
absent in the differential output !

Al 4




Distortion Analysis

Theorem: In a fully differential symmetric circuit, all even-order terms
are absent in the Taylor’s series output for symmetric differential

excitations !
+ VOl +
V|D ““““““““““““ VOD
i VOZ )
Proof: Expanding in a Taylor’s series around V,;=0, we obtain

© ) Voo=Vo1— Vo, = ihk (VlD )k _ihk ('VID )k
V01 :f(le):th (\/ID) 0 0

T () ()]
Voo =F(-Vip) = kzzc;hk (Vo) Voo ihk :(VID )k ( 1)k (Vo )kJ

When Kk is even, term in [ ] vanishes



Distortion Analysis

Theorem: In a fully differential symmetric circuit, all even harmonics are
absent in the differential output for symmetric differential excitations !

+ VOl +
Vio Voo
Proof: ) Voo
Recall: (1
> hsin((n-2k)x) for nodd

>\_
Il
o

sin” (x) =4

>
N

g sin((n-2k)x+6,)  forneven

~
Il
o

I

where h,, g,, and 6, are constants

That is, odd powers of sin"(x) have only odd harmonics present
and even powers have only even harmonics present



Distortion Analysis

Theorem: In a fully differential symmetric circuit, all even harmonics are
absent in the differential output for symmetric differential sinusoidal excitations !

— +
Vio Voo
Proof: ) Voo
Expanding in a Taylor’s series around V,;=0, we obtain
N k
~ thVID and Vg, = f Zh (- V|D)
k=0
Assume V y=Ksin(wt) W.L.O.G. assume K=1

vm:ihk[sm(@t)]k V., = Zh [-sin (wt)}

o0

V,, =V, —V,, = Zh (sm (0t)] = [-sin(wt)] ) ihk(sm (t)]f )[sin(oot)]k)

Observe the even-ordered powers and hence even harmonics are absent in this last sum



Distortion Analysis

How are spectral components determined?

By integral t+T L+T
j f(tle i tdt + j f(t)elkdt
of 2 t+T
a, = aT - (t)sm (kto)dt b, = ﬁ tj f(t)cos(ktco)dt

Integral is very time consuming, particularly if large number of components are required

By DFT (with some restrictions that will be discussed)

By FFT (special computational method for obtaining DFT)



Distortion Analysis

How are spectral components determined?

|« T I

>
[< >

N AR W A W (i S A W

— | |-——

Ts

Consider sampling f(t) at uniformly spaced points in time T seconds apart

N

This gives a sequence of samples <f (kTS )>k:1



Distortion Analysis

T —
Consider a function f(t) that is periodic with period T

)= Ay + Y Asin(kotsd,)  o=24f=2
k=1

Band-limited Periodic Functions

Definition: A periodic function of frequency f is band

f

limited to a frequency f,,, if A,=0 forall k> mfax

max



Distortion Analysis
.

"~ d
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Ts

NOTATION:

T. Period of Excitation

Tg:  Sampling Period

Np:  Number of periods over which samples are taken
N Total number of samples

N

NTS Note: N is not an integer unless a specific relationship
P T exists between N, Tcand T

h = Int([ﬂ_l}Nij Note: The function Int(x) is the integer part of x
P



Distortion Analysis

— f—

Ts

THEOREM (conceptual) : If a band-limited periodic signal is sampled at a
rate that exceeds the Nyquist rate, then the Fourier Series coefficients

can be directly obtained from the DFT of a sampled sequence.

(x(KT ) (XK



Distortion Analysis
T

I‘ &I
I~ i

LSS S

— | J—
Ts

THEOREM: Consider a periodic signal with period T=1/f and sampling
period Tg=1/fs. If Np is an integer and X(t) is band limited to f ., then

\Am\:%\x(mNerl)\ 0<m<h-1
and X(k) =0 for all k not defined above

where <X(k)>kN__§ is the DFT of the sequence <X(k-|_S )> EI:_;

N=number of samples, N is the number of periods, and h = Int(f“"]fx . )
P

Key Theorem central to Spectral Analysis that is widely used !!! and often “abused”



Why Is thiTs a Key Theorem?

LSS S S

Uiy uruyyuyt

— | |—

Te
THEOREM: Consider a periodic signal with period T=1/f and sampling
period Tg=1/fs. If Np is an integer and X(t) is band limited to fy .y, then

\Am\:%\X(mNP+1)( 0<m<h-1

and X(k) =0 for all k not defined above

where <X(k)>::l is the DFT of the sequence <X(kTS )>sz_§

N=number of samples, N; is the number of periods, and h = Int(f'\"]fX _I\Il )
P

« DFT requires dramatically less computation time than the integrals for
obtaining Fourier Series coefficients

« Can easily determine the sampling rate (often termed the Nyquist rate) tg,
satisfy the band limited part of the theorem



How IS thi§ theorem abused?

LSS S S

Uiy uruyyuyt

— | |—

Ts
THEOREM: Consider a periodic signal with period T=1/f and sampling
period Tg=1/fs. If Np is an integer and X(t) is band limited to f .y, then

|Am|=%|x(mNP+1)| 0<m<h-1
and X(k) =0 for all k not defined above

where <X(k)>kN__; is the DFT of the sequence <X(k-|_S )> EI:_;

N=number of samples, N is the number of periods, and h = Int(fMAX 1 }
P
* Much evidence of engineers attempting to use the theorem when N; is not
an integer
« Challenging to have Ny an integer in practical applications
« Dramatic errors can result if there are not exactly an integer number of 38
periods in the sampling window



3 Periods of Periodic Signal in Bold Blue

T

l¢ »|

[~ 4

N N t

) U

—_—| |—

Ts

oo N

SAMP SIG
NP

39



Distortion Analysis
T

|« |
< >|
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Ts
If the hypothesis of the theorem are satisfied, we thus have
A
X(k) :
Aq
Az
AO ! AB T A4 eoo

—toc—-oc—ooc—o— >
Np+1 2Np+1 3Np+1 4Np+1 K

40



Distortion Analysis

If the hypothesis of the theorem are satisfied, we thus have

x(k) | .
A,

Az
AO AS T A4 e oo

-
Np+1 2Np+1 3Np+1 4Np+1 Kk

FFT is a computationally efficient way of calculating
the DFT, particularly when N is a power of 2

41



FFT Examples

Recall the theorem that provided for the relationship between the
DFT terms and the Fourier Series Coefficients required

1. The sampling window be an integral number of periods

2. The input signal is band limited to f,,x

43



Some notation and understanding related to Fourier Series, Discrete
Fourier Series, Discrete Fourier Transform, Nyquist Rate, and Nyquist
Frequency may be inconsistent from source to source, confusing, and not
always correctly presented in all forums

From Wikipedia — March 30 2018

Discrete Fourier series

From Wikipedia, the free encyclopedia

A Fourier series is a representation of a function in terms of a summation of an infinite number of harmonically-related
sinusoids with different amplitudes and phases. The amplitude and phase of a sinusoid can be combined into a single
complex number, called a Fourier coefficient. The Fourier series is a periodic function. So it cannot represent any arbitrary

function. It can represent either:

(a) a periodic function, or
(b) a function that is defined only over a finite-length interval; the values produced by the Fourier series outside the

finite interval are irrelevant.

When the function being represented, whether finite-length or periodic, is discrete, the Fourier series coefficients are
periodic, and can therefore be described by a finite set of complex numbers. That set is called a discrete Fourier transform
(DFT), which is subsequently an overloaded term, because we don't know whether its (periodic)inverse transform is valid
OVer a finite or an infinite interval.|T he term discrete Fourier series (DFS) is intended for Use instead of DF T when thé
original function is periodic, defined over an infinite interval. DF [ would then unambiguously imply only a transtorm whose
inverse is valid over a finite interval. But we must again note that a Fourier series is a time-domain representation, not a
frequency domain transform. $o DFS is a potentially confusing substitute for DFT. A more technically valid description

would be DFS coefficients.




Some notation and understanding related to Fourier Series, Discrete
Fourier Series, Discrete Fourier Transform, Nyquist Rate, and Nyquist
Frequency may be inconsistent and confusing

From Wikipedia — March 30 2018

Nyquist rate

From Wikipedia, the free encyclopedia

Not to be confused with Nyquist frequency.

N This article may be confusing or unclear to readers. Please help ls clarify the

€\ Tt T T T T e S IS SO A O S O e K Dy (T aLary 2014) (Learn

how and when to remove this template message)

Nyquist frequency

From Wikipedia, the free encyclopedia

Not to be confused with Nyquist rate.

The Nyquist frequency, named after electronic
engineer Harry Nyquist, is half of the sampling rate

The Nyquist frequency should not be confused with the Nyquist rate, yhich is the minimum sampling rate that satisfies the

Nyquist sampling criterion for a given signal or tamily of signals. The Nyquist rate is twice the maximum component
frequency of the function being sampled. For example, the Nyquist rate for the sinusoid at 0.6 fg is 1.2 fg, which means that
at the fg rate, it is being undersampled. Thus, Nyquist rate is a property of a continuous-time signal, whereas Nyquist
frequency is a property of a discrete-time system.4I[°]

45



FFT Examples

Recall the theorem that provided for the relationship between the
DFT terms and the Fourier Series Coefficients required

1. The sampling window be an integral number of periods
2 f
2. N > max NP (from fyax < ;[l\u\l} )
fSIGNAL P

46



Considerations for Spectral
Characterization

*Tool Validation

*FFT Length

sImportance of Satisfying Hypothesis

*Windowing

a7



Considerations for Spectral
Characterization

*Tool Validation (MATLAB)

*FFT Length

sImportance of Satisfying Hypothesis

*Windowing

48



FFT Examples

Recall the theorem that provided for the relationship between the DFT
terms and the Fourier Series Coefficients required

—> 1. The sampling window must be an integral number of periods
2. N > 2 max Np
fsiIGNAL

49



Example WLOG assume fg,=50Hz
V,y = SIin(mt) + 0.5sIN(2mt)

W = 2nf, .
fvax-act=100HZ

Consider N,=20 N=512

fae [N 50 512
fuax = S'G{ }= > a0Hz  Tuax-acT<<fvax

2 [No| 2 20
1 1 N
fSAMPLE = = { fsic = 2fmax =1280Hz
TSAMPLE (NP ‘Tsic j Np
N

Recall  20log,,(1.0)=0.0000000

Recall  20log,,(0.5)=-6.0205999 >0
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Input Waveform

0.1
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-0.25

Location of First Point if
Extended Into Periodic Function
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Spectral Response (expressed in dB)

Rect. Window N=512 NMp =20
|:| I I I I I I

(Actually Stem plots but points connected

£l . .
in plotting program)

-100

-150

hlagidB)

-200

-250

-300

| 1 | 1 |
a 200 400 GO0 800 1000 1200
Freguency

fags =T 21
(Horizontal axis is the “Index” axis but converted to frequency) "AXis — 'SIGNAL N
P



Spectral Response (expressed in dB)

|
Rect. Window MNF512 Mp =20
|:| I I I I I I I

|
(Actually Stem plots Hut points connected

£l . .
in plotting program)
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Spectral Response

O
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Spectral Response

S7



Fundamental will appear at position 1+Np = 21
Columns 1 through 5

-316.1458 -312.9517 -329.5203 -311.1473 -314.2615
Columns 6 through 10

-315.2584 -330.6258 -317.2896 -312.2316 -311.6335
Columns 11 through 15

-308.2339 -317.7064 -315.3135 -307.9349 -304.5641
Columns 16 through 20

-314.0088 -302.6391 -306.6650 -311.3733 -308.3689

Columns 21 through 25

-0.0000 (307.7012 -312.9902 -312.8737 -305.4320

Observe system noise floor due to both spectral limitations of signal
generator and numerical limitations in FFT are below -300db

58



Second Harmonic at 1+2Np =41

Columns 26 through 30

-307.8301 -309.0737 -305.8503 -312.2772 -315.7544

Columns 31 through 35

-311.9316 -316.0581 -318.3454 -306.4977 -308.6679

Columns 36 through 40

-309.9702 -305.9809 -322.1270 -310.6723 -310.3506

Columns 41 through 45

-6.0206

-309.6071 -314.1026 -307.6405 -302.9277

Columns 46 through 50

-313.0745 -304.2330 -310.8487 -317.7966 -316.3385
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Third Harmonic at 1+3Np =61

Columns 51 through 55

-307.0529

-312.7787 -312.9340 -323.2969 -314.9297

Columns 56 through 60

-318.7605

-303.5929 -305.2994 -310.6430 -306.7613

Columns 61 through 65

-304.8298

-301.4463 -301.1410 -303.1784 -317.8343

Columns 66 through 70

-308.6310

-307.0135 -321.6015 -316.6548 -309.8946

Columns 71 through 75

-306.3472

-323.0110 -319.3267 -314.7873 -310.4085

60



Fourth Harmonic at 1+4Np = 81

Columns 76 through 80
-319.8926 -303.3641 -319.6263 -307.6894 -305.1945

Columns 81 through 85

-306.8190(-304.8860 -303.6531 -30/.2090 -309.8014

Columns 86 through 90

-313.4988 -303.4513 -310.4969 -317.9652 -312.5846
Columns 91 through 95

-309.8121 -311.6403 -312.8374 -310.5414 -308.7807
Columns 96 through 100

-316.7549 -316.3395 -308.4113 -307.3766 -311.0358
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Question: How much noise is in the computational
environment?

Fect. Window N=512 Np =20
I:I T T T

A0k .
Environmental

00 | Noise
o -1580 F
=
3]
i
=
-200 .
d
d
=260 .
-300
W“ | | | | |
a 200 400 B0 500 1000 1200
Frequency

Is this due to quantization in the computational environment or to
numerical rounding in the FFT?
62



Question: How much noise is in the computational
environment?

Rect. Window N=512 Np =20
D T T T

Environmental
=0 l Noise

-100 E
i 150 - //—
g

200

250

% o it A oty

] 2EIID AEIID EEIID BEIID 1000 1 2;JEI

Frequency

Observation: This noise is nearly uniformly distributed
The level of this noise at each component is around -310dB
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Stay Safe and Stay Healthy !







